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Abstract

A downscaling method of the microwave surface soil moisture is applied to the

PBMR data collected during the Monsoon ’90 experiment. The downscaling method

requires (1) the coarse resolution microwave observation (2) the distribution at fine

scale of soil temperature and (3) the distribution at fine scale of the surface con-

ditions composed of atmospheric forcing and the parameters involved in the mod-

eling of land surface-atmosphere interaction. During the Monsoon ’90 experiment,
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eight ground-based meteorological and flux stations were operating over the 150

km2 study area simultaneously with the acquisition of the aircraft-based L-band

PBMR data. The heterogeneous scene is hence composed of eight sub-pixels and

the microwave pixel is generated by aggregating the microwave emission of all sites.

The results show a good agreement between the downscaled and ground-based soil

moisture as long as the intensity of solar radiation is sufficiently high to use the soil

temperature as a tracer of the spatial variability of surface soil moisture.

Key words: downscaling, surface soil moisture, passive microwave remote sensing,

SMOS mission, hydrology, Monsoon ’90 experiment

1 Introduction

Passive microwave remote sensing has demonstrated the capability to capture

the high temporal variability of the near-surface soil moisture over continental

surfaces. However, the use of these data in the field of hydrology is limited by

the poor spatial resolution obtained with the current and near-future gener-

ation of spaceborne radiometers. As mentioned in Engman (1991) and more

recently in Entekhabi et al. (1999), the use of space-based passive microwave

data in hydrological modeling is not straightforward because of the scale dis-

crepancy between the typical microwave resolution (several tens of km) and

the scale at which most hydrological processes occur (about one km).

In this context, the application of passive microwave radiometry in agricul-

ture and water resources requires the disaggregation (improve the resolution)

of the passive microwave soil moisture. This has been a major motivation for

developing different downscaling methods to distribute fine scale soil moisture

within a microwave pixel. Recent works on this subject use fractal interpo-
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lation methods with fine scale surface information (Kim and Barros (2002)),

an interpolation method of passive microwave data with fine scale active mi-

crowave data (Bindlish and Barros (2002)), a distributed hydrological model

with local information on topography (Pellenq et al. (2003)) or linear re-

gressions between a vegetation index, surface temperature and surface soil

moisture with fine scale optical data (Chauhan et al. (2003)).

In the scope of the Soil Moisture and Ocean Salinity (SMOS) mission (Kerr

et al. (2001)), a new downscaling method based on fine scale optical data

was developed by Merlin et al. (2005) to improve the spatial resolution of

the SMOS surface soil moisture. The SMOS mission, scheduled for launch in

early 2007, is based on a dual polarized L-band radiometer with significant

capabilities in terms of multi-angular viewing configurations. This allows for

simultaneously retrieving surface soil moisture and vegetation water content

with a spatial resolution of approximately 40 km (Wigneron et al. (2000)).

To downscale the 40 km resolution SMOS soil moisture, the method of Mer-

lin et al. (2005) operates in two successive steps. In the first step, a spatial

distribution of surface soil moisture is estimated from the radiometric soil

temperature derived from fine scale (typically 1 km resolution) optical data.

The distribution is then a function of two parameters: the microwave scale

soil moisture WSMOS and a first-order parameter f1 fixing the range covered

by downscaled values. In the second step, the distribution obtained in step 1

is calibrated at microwave scale by inverting both parameters WSMOS and f1

from multi-angular SMOS observation.

Based on the Southern Great Plains ’97 data (Jackson et al. (1999)), Mer-

lin et al. (2005) showed that the radiometric soil temperature derived from

3



thermal/optical data can be used to describe the spatial variability of L-band

microwave soil moisture. The objective of this paper is to validate with the

Monsoon ’90 data (Kustas et al. (1991); Kustas and Goodrich (1994)) two key

steps of the disaggregation algorithm which were not tested with real data by

Merlin et al. (2005), in particular the use of a land surface model within the

disaggregation and the ability of the algorithm to invert the pair (WSMOS, f1)

from multi-angular microwave data.

During the Monsoon ’90 experiment, eight ground-based meteorological and

flux (METFLUX) stations were operating over the 150 km2 study area si-

multaneously with the acquisition of the aircraft-based L-band PBMR data.

In this study, a heterogeneous coarse resolution microwave pixel is generated

by aggregating the eight PBMR pixels located at the eith METFLUX sites.

The performance of the method is then assessed by comparing the downscaled

surface soil moisture to ground-based measurements at each METFLUX site

and for each day of PBMR observation.

In the disaggregation method, the spatial variability of surface soil moisture

within a microwave pixel is explained with fine scale optical data. As the trian-

gular method of Chauhan et al. (2003) is based on the same local information,

a comparison between both approaches is proposed in section 2. In section 3,

the data collected during the Monsoon ’90 experiment are described and the

setup of a coarse resolution microwave pixel used as input of the dowscaling

method is detailed. The models are then presented in section 4 before the main

steps of the method of Merlin et al. (2005) are reminded. Finally in section 5,

the downscaling scheme is applied to the generated microwave pixel and the

downscaled surface soil moisture is compared to ground-based measurements.
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2 Comparison with the triangular method

The downscaling method adopted in this paper is fully described in Merlin

et al. (2005) (M05). As there are a few similarities with the triangular method

presented in Chauhan et al. (2003) (C03), a comparison of both approaches is

provided below.

Both C03 and M05 use fine scale remotely sensed data in the visible, near-

infrared and thermal infrared to describe the spatial variability of the mi-

crowave soil moisture at fine scale. Basically, the radiometric surface temper-

ature Trad is derived from thermal infrared data and correlated in space with

the microwave soil moisture W . Visible/near-infrared data are then used to

account for the effect of the vegetation heterogeneity in the spatial correlation

between Trad and W .

In both methods, the spatial correlation between the radiometric surface tem-

perature Trad and the microwave soil moisture W is explained by the capacity

of the surface to counter the increase of its physical temperature by evap-

orating the soil water content (surface thermal inertia). To account for the

dependence of the surface thermal inertia to surface variables other than W ,

auxiliary information at optical resolution are used. In particular, C03 uses

NDVI to calibrate empirically the correlation between Trad and W for different

vegetation covers and M05 uses the fractional vegetation cover to invert the

radiometric soil temperature, which is assumed to be more directly linked to

W than the radiometric surface Trad.

Beyond these similarities, M05 differs from C03 in three main points. First,

M05 is based on physical models whereas the disaggregation strategy of C03
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is empirically-based. Second, it uses all the data available at optical resolution

(soil texture, atmospheric forcing and all the soil and vegetation character-

istics involved in the modeling of land surface-atmosphere interaction) and

not uniquely a vegetation index as in C03. Third, M05 requires a microwave

observation composed of at least two independent (angular) brightness tem-

peratures (i.e. a SMOS type pixel). In C03, a unique brightness temperature

is sufficient.

3 The data

The data collected during the Monsoon ’90 campaign are used. In this section,

the Monsoon ’90 data are described and the setup of the microwave pixel used

as input of the downscaling method is detailed.

3.1 The Monsoon ’90 data

The Monsoon ’90 Experiment was conducted during the summer 1990 over

an arid watershed in south central Arizona in the USA (Kustas and Goodrich

(1994)). The purpose of the experiment was to observe the moisture fluxes

in an arid climate during a drydown and the role of remote sensing in de-

termining these fluxes. A network of eight meteorological surface energy flux

(METFLUX) stations covering the main study area (about 150 km2) were sit-

uated in grass-dominated and shrub-dominated ecosystems and in the transi-

tion zones containing both vegetation types. Each METFLUX site measured

continuously: the ground 0–5 cm soil moisture, the ground soil temperature

at different depths, meteorological conditions at screen height composed of air
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temperature, relative humidity, wind speed and solar radiation. Soil texture

was characterized by ground-based measurements of sand and clay percent-

ages, and canopy height was estimated with Weltz et al. (1994).

As part of the Monsoon ’90 campaign, the NASA PushBroom Microwave

Radiometer (PBMR) was flown on six flights of the C-130 aircraft during a

10-days period in July and August of 1990. The date, time and cloud cover

conditions of each of the six PBMR flights are presented in Table 1. The

objective was to map the surface brightness temperature at a wavelength of

21-cm (L band) and to infer surface soil moisture from these data. The 4 beams

of PBMR instrument point at ±8 and ±24 degrees incidence angle with a 3 dB

beam width of about 0.3 altitude. For Monsoon ’90 the PBMR flights were at

an altitude of 600 m, which yielded an IFOV of 180 m. Available PBMR data

of the Monsoon ’90 experiment are provided under the form of nadir brightness

temperatures. To create the images of the brightness temperature at nadir,

the outer beams were corrected for incidence angle effects by multiplying them

by the ratio of the average of the center beam to the outer beam on each side.

3.2 Generate a time-series of heterogeneous microwave pixels

The data collected during the Monsoon ’90 experiment are particularly suit-

able for testing the downscaling method M05. All the required input data are

available at the time of L-band PBMR observations. In addition, the spatial

variations of rainfall during the 10-days period of PBMR observations (from

Julian day 212 to Julian day 221) caused a significant variability of soil mois-

ture within the study area. The conditions particularly dry on Julian day

(JD) 212, and particularly wet on JD 214 and 216, and the drydown process
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from JD 217 to the end of PBMR missions (on JD 221) allow to apply the

downscaling method under different surface and atmospheric conditions.

A time-series of heterogeneous microwave pixels is generated from PBMR

data. For each day of PBMR observation, a microwave pixel is generated by

aggregating the eight PBMR pixels located at the eight METFLUX sites. The

heterogeneity within the microwave pixel is hence characterized locally by each

METFLUX station providing ground-based measurements of the 0–5 cm soil

moisture, the soil temperature at different depths and atmospheric conditions.

One should note that the input of radiometric soil temperature is not used in

this application, and is replaced by the ground-based soil temperature mea-

sured locally by the eight METFLUX stations.

In the next sections, the scale of the PBMR pixels composing the microwave

pixel (associated with the eight METFLUX sites) will be referred to “local

scale”.

4 Method

The two models used in the analysis are described and the main steps of the

downscaling method are presented.

4.1 Models

Two models are used by the downscaling method: an L-band radiative transfer

model and a land surface model. A description of both models is given below.
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4.1.1 A radiative transfer (RT) model

A radiative transfer model is used by the downscaling method to simulate the

L-band brightness temperatures remotely sensed by PBMR instrument during

the Monsoon ’90 experiment.

Over the 10-days period of PBMR observations, Schmugge et al. (1994) showed

that there does not appear to be any correlation of the variation of the slopes

of the relation PBMR brightness temperature/ground-based soil moisture

with any soil or vegetation parameters such as sand, clay, percentage rock

or biomass. As a matter of fact, the physically-based tau-omega formalism

(Mo et al. (1982); Brunfeldt and Ulaby (1984); Ulaby et al. (1986)) could

not be used to model the L-band surface emission. However, the results of

Schmugge et al. (1994) on a site-by-site basis showed excellent correlation

of PBMR brightness temperatures with ground-based soil moisture. In this

study, the results of Schmugge et al. (1994) are therefore used to build an em-

pirical relationship between PBMR brightness temperatures and ground-based

measurements of soil moisture on each METFLUX site.

The formulation of the angular brightness temperature TBα at the incidence

angle α is given by:

TBα = aαW + bα (1)

with W the 0–5 cm soil water content and aα and bα two angular parameters.

The radiative transfer (RT) model simulates the microwave observation TB

composed of the nadir brightness temperature TB⊥ and an oblique brightness
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temperature TB∠:

TB = (TB⊥, TB∠) = RT(W, X) (2)

with X = (a⊥, b⊥, a∠, b∠) a vector composed of the four angular parameters.

The calibration of RT model on the Monsoon ’90 data is done in two steps. The

first step consists of using the Monsoon ’90 nadir brightness temperature to

calibrate parameters a⊥ and b⊥. Assuming that ground-based measurements of

surface soil moisture are spatially consistent with the 180 m resolution PBMR

nadir brightness temperature, parameters a⊥ and b⊥ are evaluated for each

METFLUX site by minimizing the error on the simulated nadir brightness

temperatures. Only the three first days of PBMR observations are used for

the calibration (JDs 212, 214 and 216).

The second step of the calibration of RT model consists of calibrating param-

eters a∠ and b∠. This requires to generate an oblique brightness temperature

TB∠ from the Monsoon ’90 nadir brightness temperature. Given that PBMR

instrument is composed of four beams pointing at ±8 and ±24, one is able to

synthetize a 24 incidence angle brightness temperature from the nadir bright-

ness temperature TB⊥ (taken at 8 incidence angle) and the angular effects

sensed by the instrument. In practice, the oblique brightness temperature

TB∠ is computed by dividing the Monsoon ’90 nadir brightness temperature

by the daily mean directional ratio sensed by PBMR instrument. Parameters

a∠ and b∠ are then estimated for each METFLUX site by minimizing the root

mean square difference between simulated and generated oblique brightness

temperatures with the data subset composed of JDs 212, 214 and 216.

Calibration parameters are presented in Table 2. Figure 1 illustrates the cal-
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ibration results in terms of the simulated brightness temperature and the

simulated nadir-oblique brightness temperature difference. In (a), the bright-

ness temperature simulated by RT model is plotted versus PBMR data. The

calibration error is found to be 4.5 K for the entire dataset. In (b), the daily

difference (TB⊥−TB∠) is plotted as function of the daily mean soil moisture

for JDs 212, 214, 216, 217, 220 and 221. It can be seen that the angular effect

increases with surface soil moisture. This information is specifically used by

the method of Merlin et al. (2005) to constrain properly the disaggregated

values at the scale of microwave resolution.

4.1.2 A land surface (LS) model

A land surface model is used by the downscaling method to simulate the soil

surface temperature under different surface conditions within the microwave

pixel.

The land surface model used for the application to the Monsoon ’90 data is

the so-called N95 surface model developed by Norman et al. (1995), revised by

Kustas et al. (1998) and improved with Kustas and Norman (1999). Briefly,

a dual-source model treating the energy balance of the soil/substrate and

vegetation was developed to use radiometric surface temperature observations

at zenith view angle (Norman et al. (1995)) and remotely sensed images of

near-surface soil moisture (Kustas et al. (1998)) for estimating the soil energy

balance over the watershed of the Monsoon ’90 experiment. In this study, the

model revised by Kustas et al. (1998) is preferred because the heterogeneity of

the 0–5 cm soil moisture in accounted for in the estimation of soil temperature.

The model formulation computes explicitly the soil evaporation as a function
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of the resistance of the surface soil layer to water vapor transfer. The resistance

of surface soil layer rss is parameterized with surface soil moisture W (Sellers

et al. (1992)):

rss = exp(A − BW/Wsat) (3)

with A and B two calibration parameters and Wsat the saturated volumetric

water content, parameterized with sand fraction following Noilhan and Mah-

fouf (1996). The land surface (LS) model is used to simulate radiometric soil

temperature Ts:

Ts = LS(W, Y ) (4)

given the 0–5 cm soil water content W and the vector Y = (S, Ta, Rha, ua, sand, A, B, hc, LAI)

composed of: incoming solar radiation S, air temperature Ta, relative humidity

of air Rha, wind speed ua, sand fraction, parameters A and B, canopy height

hc and LAI.

The calibration of LS model on a site-by-site basis is performed on parameters

A and B by minimizing the error on the simulated soil temperature in the

period JD 212-216. A mean value estimated to 1 was taken for LAI (Daughtry

et al. (1991)). The ensemble of parameters other than hc, sand, A and B

were fixed to the homogeneous values estimated in Kustas et al. (1998) and

Kustas and Norman (1999) for the study area. The dataset of ground-based

soil temperature is generated by averaging the 5 independent ground-based

measurements of soil temperature (3 at −2.5 cm and 2 at −5 cm) acquired at

each METLFLUX site between 10 a.m. and 2 p.m. (12 acquisitions per day

and per site) during the 10-days period of PBMR observation. The values of
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parameters A and B are presented in Table 2 for the eight METFLUX sites.

The soil surface temperature simulated by LS model is plotted versus ground-

based measurements in Figure 2. The root mean square error on the simulated

soil temperature in the whole period (JD212-221) is found to be 3.5 K.

4.2 Downscaling Method

The method M05 downscales the microwave surface soil moisture in two suc-

cessive steps. In the first step, the local information provided by the eight

METFLUX stations (ground-based soil temperature, atmospheric conditions,

soil and vegetation characteristics) are used to describe the spatial variability

of surface soil moisture within the microwave pixel. A soil moisture distribu-

tion is then expressed as function of two parameters: the microwave scale soil

moisture WSMOS and a first-order parameter f1 called the contrast parameter

of the distribution. In the second step, the distribution obtained in step 1 is

calibrated at the scale of the microwave pixel by inverting both parameters

WSMOS and f1 from bi-angular microwave observation.

The two main steps of the downscaling method (i.e. estimate a distribution,

and calibrate the distribution) are described below and shown in the diagram

of Figure 3.

4.2.1 Estimate a soil moisture distribution

The first step of the downscaling method consists of estimating a distribution

of surface soil moisture from the ground-based soil temperature measured

locally at the METFLUX sites. One difficulty to link the ground-based soil
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temperature Ts to the microwave soil moisture W is the fact that the spatial

correlation between Ts and W depends on other surface variables such as soil

texture, atmospheric forcing and soil/vegetation characteristics (i.e. all the

variables contained in Y ). To overcome this difficulty, the downscaling method

uses LS model and the knowledge of the local surface conditions Y within the

microwave pixel to extract specifically the information on W contained in

Ts. One is then able to link the spatial variability of surface soil moisture

to the known variability of ground-based soil temperature. Both points are

successively described below.

4.2.1.1 Extract the information contained in Ts: to extract the infor-

mation on W contained in Ts, the downscaling method simulates the variability

of ground-based soil temperature that is specifically due to the variables con-

tained in Y . In practice, two soil temperatures are simulated with LS model.

First, LS model is used to simulate the soil surface temperature noted Ts asso-

ciated with the local ground-based surface conditions Y m (exponent m refers

to measured variables):

Ts = LS(W, Y m) (5)

Second, LS model is used to simulate the soil surface temperature noted Ts

associated with the surface conditions aggregated at the scale of the microwave

pixel < Y >:

Ts = LS(W, < Y >) (6)

where < Y > is the average of the local surface conditions Y m. The difference

(Ts −Ts) represents the predicted contribution of soil temperature that is due
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to the varibility of Y within the microwave pixel. By substracting (Ts − Ts)

to the ground-based soil temperature T m
s , a theoretical variable noted T m

s is

obtained:

T m
s = T m

s − (Ts − Ts) (7)

As the function written in (8) is a projection, the variable T m
s is called Pro-

jected soil temperature. By definition, the spatial variability of Projected soil

temperature is attributed uniquely to the spatial variability of surface soil

moisture. The downscaling method can therefore use T m
s to explain the spa-

tial variability of W .

4.2.1.2 Estimate a spatial distribution: a spatial distribution of sur-

face soil moisture is finally expressed by linking the downscaled soil moisture

W to Projected soil temperature T m
s at first order:

W = f0 + f1T m
s (8)

with f0 and f1 two parameters defined at the scale of the microwave pixel.

4.2.2 Calibrate the distribution

The second step of the downscaling method aims to calibrate the soil moisture

distribution of (8) at the scale of the microwave pixel. In practice, the calibra-

tion of parameters f0 and f1 is performed by looking for a particular solution of

the pair (f0, f1) such that the microwave scale soil moisture WSMOS appears in

the expression of the downscaled soil moisture W . Both parameters WSMOS

and f1 are then inverted by matching the microwave observation simulated
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from the downscaled soil moisture and the measured microwave observation.

4.2.2.1 Find a particular solution: a particular solution of the pair

(f0, f1) is set to make the microwave scale soil moisture WSMOS appear in the

expression of the downscaled soil moisture. Let f0 such as:

f0 = WSMOS − f1 < T m
s > (9)

where < T m
s > is the Projected soil temperature aggregated (linearly) over

the microwave pixel.

4.2.2.2 Express the downscaled soil moisture: by replacing f0 in (8)

by the expression of (9), a new expression of the downscaled soil moisture is

obtained as a function of the pair (WSMOS, f1):

W (WSMOS, f1) = WSMOS + f1(T m
s − < T m

s >) (10)

In this expression, WSMOS determines the effective level of the distribution

at microwave resolution whereas the contrast parameter f1 fixes the range

covered by downscaled values.

4.2.2.3 Build a cost function: a cost function is built in order to evalu-

ate the distance between the microwave observation simulated from the down-

scaled soil moisture of (10) and the measured microwave observation. The cost

function F is defined as:

F (WSMOS, f1) =

∥

∥

∥

∥

∥

< RT(W, Xm) > −TBm
SMOS

∥

∥

∥

∥

∥

2

(11)
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with W the fine scale soil moisture expressed in (10), TBm
SMOS the measured

microwave observation and < RT(W, Xm) > the average of simulated lo-

cal observations. The cost function F is then minimized to invert the pair

(WSMOS, f1). Note that the problem of retrieving the pair (WSMOS, f1) from

bi-angular microwave data is theoretically well defined because the number

of independent microwave observations contained in TBm
SMOS is equal to the

number of unknows, which is two.

4.2.2.4 Invert WSMOS: the microwave scale soil moisture WSMOS is in-

verted by setting f1 = 0:

W inv
SMOS = MinWSMOS

F (WSMOS, 0) (12)

with W inv
SMOS the inverted SMOS scale soil moisture, which minimizes the cost

function F .

4.2.2.5 Invert f1: the contrast parameter f1 is inverted by fixing WSMOS =

W inv
SMOS:

f inv
1 = Minf1

F (W inv
SMOS, f1) (13)

with f inv
1 the inverted value of contrast parameter, which minimizes the cost

function F . At this point, the soil moisture distribution is entirely determined

and is characterized by the pair (W inv
SMOS, f inv

1 ). Note that the description

given above is an outline of the method and readers are encouraged to refer

to Merlin et al. (2005) for an understanding in depth of the different steps of

the algorithm.

17



5 Application

The downscaling method is applied to the time-series of microwave pixels

generated from the Monsoon ’90 data. To account for uncertainity in input

data, an ensemble of input data is first generated for the six days of PBMR

observation. Then, the usefullness of the projection technique of gound-based

soil temperature is checked by comparing the correlation ground-based soil

temperature/soil moisture and the correlation Projected soil temperature/soil

moisture for the entire input dataset. Finally, the results of the disaggregation

are presented and statistically compared to the ground-based measurements

of surface soil moisture at each METFLUX site and for each PBMR mission.

5.1 Generate an ensemble of input data

A SMOS type microwave observation is generated on JDs 212, 214, 216, 217,

220 and 221 by aggregating the Monsoon’90 brightness temperature acquired

at the eight METFLUX sites. The microwave observation TBm
SMOS is com-

posed of two angular (nadir and oblique) brightness temperatures. The nadir

brightness temperature TBm
SMOS

⊥ is generated by averaging the Monsoon ’90

nadir brightness temperatures over the METFLUX sites. The oblique bright-

ness temperature is generated by dividing the Monsoon ’90 nadir data by

the daily angular effect sensed by PBMR instrument. Because the angular

brightness data extrapolated from the nadir looking PBMR observations do

not provide independent data set of brightness temperatures in terms of mea-

surement noise, a Gaussian noise of 2 K is added on the oblique brightness

temperature. The microwave scale oblique brightness temperature TBm
SMOS

∠
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is then generated by averaging the oblique data at all sites. A set of 20 inde-

pendent oblique observations is generated for each PBMR mission.

To account for uncertainity in ground-based input data, the data collected

between 10 a.m. and 2 p.m. from JD 212 to JD 221 are used. Within the four

hours-period, 12 acquisitions of ground-based soil temperature T m
s and surface

conditions Y m were sampled with a time step of integration of 20 minutes.

The 12 measurements are therefore independent with respect to measurement

noise.

The ensemble of input data is therefore composed of 20 × 12 = 240 indepen-

dent datasets for each of the six PBMR missions. This allows for the provision

of statistical results in terms of mean and standard deviation of the 240 down-

scaled values of surface soil moisture.

5.2 Projection of soil temperature

An illustration is given of the projection technique. It is reminded that the

downscaling method projects ground-based soil temperature with equation

(7) to use ground-based soil temperature as a tracer of the spatial variability

of surface soil moisture within the microwave pixel. In fact, the projection

aims to improve the correlation between soil temperature and soil moisture.

To check the usefullness of the projection of ground-based soil temperature,

Projected soil temperature is computed with the entire input dataset and

the correlation between Projected soil temperature and surface soil moisture

is compared to the correlation between ground-based soil temperature and

surface soil moisture. Note that the aggregated surface conditions < Y >
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involved in (6) are computed by averaging the local surface conditions Y m of

the entire dataset.

In Figure 4 are plotted in (a) ground-based soil temperature versus surface

soil moisture and in (b) Projected soil temperature T m
s

(1)
versus surface soil

moisture. Note that Projected soil temperature T m
s

(1)
is defined exatly as in

equation (7). It can be seen that Projected soil temperature is a better tracer

of surface soil moisture than ground-based soil temperature. In particular, the

projection makes the low values of soil temperature observed in (a) increase

so that the correlation soil temperature/soil moisture is generally improved in

(b).

However, the errorbars of Projected soil temperature T m
s

(1)
computed for

each METFLUX site and each PBMR mission are relatively high. This ef-

fect is assumed to be attributed to relatively high variations in solar radiation

within the input dataset. To test this assumption, another projection tech-

nique named projection 2 is proposed. Projected soil temperature T m
s

(2)
is

defined by replacing in (7) the local surface conditions Y m by Y (2). The new

surface conditions Y (2) are written as:

Y (2) = (< S >, Ta, Rha, ua, sand, A, B, hc, LAI) (14)

with < S > the aggregated solar radiation (average of the local solar radiation

Sm). In Figure 4 are plotted in (b) Projected soil temperature T m
s

(1)
versus

surface soil moisture and in (c) Projected soil temperature T m
s

(2)
versus sur-

face soil moisture. It can be seen that the standard deviation of Projected

soil temperature T m
s

(2)
is much lower than the standard deviation of Pro-

jected soil temperature T m
s

(1)
. This result is due to the errors introduced by
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LS model when simulating soil temperature in a wide range of solar radiation.

It is suggested that the soil temperature simulated by LS model is not exactly

consistent with the soil temperature measured at −2.5 and −5.0 cm: LS model

simulates the soil skin temperature. The simulated soil temperature is there-

fore more sensitive to solar radiation than the ground-based soil temperature

measured at several centimeters below the soil surface.

It is shown that Projected soil temperature T m
s

(2)
is a better tracer of the

spatial variability of surface soil moisture than ground-based soil tempera-

ture and is more robust to uncertainity in surface conditions (especially solar

radiation) than the Projected soil temperature obtained with projection tech-

nique 1. Projection technique 2 is therefore chosen for the application of the

downscaling method in the next section.

5.3 Results

The downscaling method is applied to the six microwave pixels generated

from the Monsoon ’90 data. For each day of PBMR mission, the downscaling

method is run 240 times on the noisy input dataset and the performance of the

approach is tested by comparing the downscaled soil moisture to ground-based

measurements at the eight METFLUX sites.

Results are illustrated in Figure 5 where the ground-based soil temperature

T m
s , the Projected soil temperature T m

s and the downscaled soil moisture W

are successively plotted versus ground-based soil moisture W m for each MET-

FLUX site and each PBMR mission. A good agreement is generally observed

between the downscaled soil moisture and ground-based measurements. On
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JD 214 however, the spatial variability of surface soil moisture is not as well

represented as for the other days.

In Table 3 are presented for each PBMR mission the mean and the standard

deviation of the error SD (%) between the downscaled and ground-based

soil moisture, the aggregated solar radiation < S > (W/m2), the inverted

microwave scale soil moisture W inv
SMOS (%) and the inverted contrast parameter

f inv
1 (%/K). It can be seen that the aggregated solar radiation < S > is

relatively low (651 W/m2) on JD 214. In fact, the value of solar radiation

at microwave resolution is likely to affect the robustness of the downscaling

method. When solar radiation is globally high within the microwave pixel, the

contrast in soil temperature is also relatively high so that the spatial variability

of soil temperature can be used to describe the spatial variability of surface soil

moisture. However, when solar radiation is globally low within the microwave

pixel, the ratio “variability of soil temperature due to some heterogeneity in

surface soil moisture”/“measurement noise on soil temperature” is also low,

which results in high deviations on the downscaled soil moisture.

6 Conclusion

A downscaling method of the surface soil moisture extracted from a SMOS

type pixel is applied to the Monsoon ’90 data. The aircraft-based L-band

PBMR data obtained on Julian days 212, 214, 216, 217, 220 and 221 are

aggregated to generate a time-series of heterogeneous microwave pixels. Each

microwave pixel is composed of eight sub-pixels corresponding to the PBMR

pixels located at the eight METFLUX stations operating over the study area.
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The microwave soil moisture is downscaled in two successive steps. In a first

step, the local information provided by the eight METFLUX stations (ground-

based soil temperature, atmospheric conditions, soil and vegetation character-

istics) are used to describe the spatial variability of surface soil moisture within

the microwave pixel. A soil moisture distribution is then expressed as function

of two parameters: the microwave scale soil moisture WSMOS and a first-order

parameter f1 called the contrast parameter of the distribution. In a second

step, the distribution of surface soil moisture obtained in step 1 is calibrated

at the scale of the microwave pixel by inverting both parameters WSMOS and

f1 from bi-angular microwave observation.

The performance of the approach is tested by comparing the output down-

scaled soil moisture to ground-based measurements at each METFLUX site

and for each day of PBMR mission. The results show a good agreement be-

tween the downscaled and measured surface soil moisture as long as the inten-

sity of solar radiation is sufficiently high (above 700 Wm−2) to use ground-soil

soil temperature as a tracer of the spatial variability of surface soil moisture.

The application to the Monsoon ’90 data clearly shows that the downscaling

method should be used for clear sky conditions, when solar radiation is glob-

ally high within the microwave pixel. Note that this limitation should not be

an issue in the operational case since the thermal infrared data from which

the soil temperature is derived are available only for clear sky conditions.

In this application, an empirical radiative transfer model first parameterized

with aircraft-based data was successfully used by the disaggregation method.

The point is such a parameterization may be difficult to develop under different

surface conditions, over large areas and over time periods longer than the 10-

days period of PBMR data. To overcome these limitations, physically-based
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radiative transfer models should be used in the future, with a particular focus

on the modeling of angular effects.

Besides, to fully assess the robustness of the method on an operational basis,

the algorithm needs to be tested with radiometric soil temperature. This is an

important issue because the radiometric soil temperature may be not as sensi-

tive to the 0–5 cm soil moisture as the ground-based −2.5 cm soil temperature

used in the paper.

In the future, the sequential assimilation of the microwave data disaggregated

by such a downscaling method will provide some information about the spatial

and temporal variation in the near-surface and root-zone soil moisture. This

will be a critical issue for achieving efficient and sustainable water use.
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Table 1

Date, time and cloud cover conditions of the 6 PBMR flights during the Monsoon

’90 experiment.

Julian day Time (MST) Cloud cover

212 0930-1110 Mostly clear skies

214 0915-1040 Overcast skies

216 0825-0940 High cirrus clouds

217 1000-1100 Partly cloudy - Cirrus

220 0900-0915 Clear skies

221 1010-1115 Clear skies
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Fig. 1. Calibration results in terms of the simulated angular (nadir and oblique)

brightness temperature and the simulated angular effect evaluated as the daily

nadir-oblique brightness temperature difference.
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Table 2

Calibration parameters estimated over the eight sub-pixels composing the generated

microwave pixel.

Sub-pixel a⊥ b⊥ a∠ b∠ A B

1 −8.50 328.45 −8.88 326.78 7.0 8.5

2 −3.55 302.39 −3.71 299.31 6.0 3.5

3 −4.19 295.56 −4.42 292.51 6.5 6.5

4 −2.05 290.68 −2.18 287.15 7.0 5.5

5 −5.49 341.13 −5.90 341.45 8.0 9.5

6 −6.23 321.60 −6.58 319.80 7.0 9.0

7 −3.92 292.21 −4.12 288.66 6.0 5.0

8 −3.10 290.54 −3.26 287.10 6.5 3.0
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Fig. 2. Soil surface temperature simulated by LS model versus ground-based mea-

surements (�: JD 212-216; ◦: JD 217-221).
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Table 3

Mean and standard deviation of: the error SD between the downscaled and mea-

sured soil moisture, the aggregated solar radiation < S >, the inverted microwave-

scale soil moisture W inv
SMOS and the inverted contrast parameter f inv

1 . The statistical

results were computed with 240 independent datasets for each of the six microwave

pixels.

Error Aggregated Inverted Inverted

solar microwave-scale contrast

radiation soil moisture parameter

SD (%) < S > (Wm−2) W inv
SMOS (%) f inv

1 (%/K)

Julian day Mean (SD) Mean (SD) Mean (SD) Mean (SD)

212 1.1 (0.34) 872 (67) 5.7 (0.04) −0.89 (0.20)

214 6.9 (2.4) 647 (223) 16.5 (0.05) −4.3 (1.4)

216 4.5 (0.8) 882 (86) 14.6 (0.05) −3.0 (0.73)

217 3.8 (0.86) 761 (167) 9.3 (0.05) −3.5 (1.0)

220 3.5 (0.70) 852 (56) 10.5 (0.03) −1.8 (0.58)

221 1.5 (0.41) 887 (36) 7.5 (0.02) −1.8 (0.51)
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Fig. 3. The two successive steps of the method are presented. In step 1, a spatial

distribution of surface soil moisture is estimated from ground-based soil temperature

Tm
s and from LS model predictions giving the contribution of the ground-based soil

temperature due to surface conditions’ heteorogeneity (Ts−Ts). The downscaled soil

moisture is then a function of two parameters defined at microwave resolution f0 and

f1. In step 2, the local relationship derived in step 1 is re-written at microwave scale

to make the coarse resolution soil moisture WSMOS appear in the expression. Both

parameters WSMOS and f1 are then inverted from bi-angular microwave observation

to calibrate the distribution.
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Fig. 4. Comparison of the correlation between soil temperature and ground-based

soil moisture for three different soil temperatures: (a) ground-based soil temperature

Tm
s , (b) the soil temperature T m

s

(1)
obtained with projection technique 1 and (c)

the soil temperature T m
s

(2)
obtained with projection technique 2. The mean and

the standard deviation of the 12 soil temperature values associated with a given

METFLUX site on a given day between JD 212 and JD 221 are represented (�: JD

212-216; ◦: JD 217-221).
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Fig. 5. Results of the application of the downscaling method to the six mi-

crowave pixels. For each PBMR mission, ground-based soil temperature, Projected

soil temperature and the downscaled soil moisture are successively plotted versus

ground-based soil moisture. Mean and standard deviation are provided for each

METFLUX site to show the sensitivity of the method to uncertainity in input data

(◦: site 1; �: site 2 ; �: site 3; 4: site4; 5: site5; .: site 6; /: site 7; ?: site 8).
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